Package: micemd 1.10.0

micemd: Multiple Imputation by Chained Equations with Multilevel Data

Addons for the 'mice' package to perform multiple imputation using chained equations with two-level data. Includes imputation methods dedicated to sporadically and systematically missing values. Imputation of continuous, binary or count variables are available. Following the recommendations of Audigier, V. et al (2018) <doi:10.1214/18-STS646>, the choice of the imputation method for each variable can be facilitated by a default choice tuned according to the structure of the incomplete dataset. Allows parallel calculation and overimputation for 'mice'.

Authors:Vincent Audigier [aut, cre], Matthieu Resche-Rigon [aut], Johanna Munoz Avila [ctb]

micemd_1.10.0.tar.gz
micemd_1.10.0.zip(r-4.5)micemd_1.10.0.zip(r-4.4)micemd_1.10.0.zip(r-4.3)
micemd_1.10.0.tgz(r-4.4-any)micemd_1.10.0.tgz(r-4.3-any)
micemd_1.10.0.tar.gz(r-4.5-noble)micemd_1.10.0.tar.gz(r-4.4-noble)
micemd_1.10.0.tgz(r-4.4-emscripten)micemd_1.10.0.tgz(r-4.3-emscripten)
micemd.pdf |micemd.html
micemd/json (API)

# Install 'micemd' in R:
install.packages('micemd', repos = c('https://vaudigier.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • CHEM97Na - An incomplete two-level dataset which consists of A/AS-level examination data from England
  • IPDNa - A simulated Individual Patient Data (IPD) meta-analysis with missing values.
  • Obesity - A two-level incomplete dataset based on an online obesity survey

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.03 score 1 stars 1 packages 72 scripts 584 downloads 5 mentions 12 exports 106 dependencies

Last updated 1 years agofrom:a93119209c. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winNOTEOct 31 2024
R-4.5-linuxNOTEOct 31 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:find.defaultMethodmice.impute.2l.2stage.binmice.impute.2l.2stage.heckmanmice.impute.2l.2stage.normmice.impute.2l.2stage.pmmmice.impute.2l.2stage.poismice.impute.2l.glm.binmice.impute.2l.glm.normmice.impute.2l.glm.poismice.impute.2l.jomomice.paroverimpute

Dependencies:abindADGofTestbackportsbitbit64bootbroomclicliprcodetoolscolorspacecopulacpp11crayonDBIdigestdistrdistrExdplyrevdfansifarverforcatsforeachgamlss.distgenericsggplot2GJRMglmnetgluegmpGPArotationgslgtablehavenhmsismevisobanditeratorsjomolabelinglatticelifecyclelme4magicmagrittrMASSMatrixmatrixStatsmgcvmiceminqamitmlmitoolsmixmetamnormtmunsellmvmetamvtnormnlmenloptrnnetnumDerivordinalpanpbivnormpcaPPpillarpkgconfigprettyunitsprogresspsplinepsychpurrrR6RColorBrewerRcppRcppArmadilloRcppEigenreadrrlangRmpfrrpartscalesscamsfsmiscshapestablediststartupmsgstringistringrsurveysurvivaltibbletidyrtidyselecttrusttzdbucminfutf8vctrsVGAMVineCopulaviridisLitevroomwithr

Readme and manuals

Help Manual

Help pageTopics
Multiple Imputation by Chained Equations with Multilevel Datamicemd-package micemd
An incomplete two-level dataset which consists of A/AS-level examination data from EnglandCHEM97Na
Suggestion of conditional imputation models to use accordingly to the incomplete datasetfind.defaultMethod
A simulated Individual Patient Data (IPD) meta-analysis with missing values.IPDNa
Imputation by a two-level logistic model based on a two-stage estimatormice.impute.2l.2stage.bin
Imputation based on Heckman model for multilevel data.mice.impute.2l.2stage.heckman
Imputation by a two-level heteroscedastic normal model based on a two-stage estimatormice.impute.2l.2stage.norm
Predictive mean matching imputation for two-level variablemice.impute.2l.2stage.pmm
Imputation by a two-level Poisson model based on a two-stage estimatormice.impute.2l.2stage.pois
Imputation of univariate missing data using a Bayesian logistic mixed model based on non-informative prior distributionsmice.impute.2l.glm.bin
Imputation of univariate missing data using a Bayesian linear mixed model based on non-informative prior distributionsmice.impute.2l.glm.norm
Imputation of count variable using a Bayesian mixed model based on non-informative prior distributionsmice.impute.2l.glm.pois
Imputation of univariate missing data by a Bayesian multivariate generalized model based on conjugate priorsmice.impute.2l.jomo
Parallel calculations for Multivariate Imputation by Chained Equationsmice.par
A two-level incomplete dataset based on an online obesity surveyObesity
Overimputation diagnostic plotoverimpute
Graphical investigation for the number of generated datasetsplot.mira